Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/99999/fk45h90080
Title: Simulation of Realistic Images and Exoplanet Detection for Starshade Missions
Authors: hu, Mengya
Advisors: Kasdin, N. Jeremy
Vanderbei, Robert
Contributors: Mechanical and Aerospace Engineering Department
Keywords: exoplanet
hypothesis testing
image simulation
signal detection
space telescope
starshade
Subjects: Aerospace engineering
Astronomy
Information technology
Issue Date: 2021
Publisher: Princeton, NJ : Princeton University
Abstract: A starshade suppresses starlight by a factor of 1E11 in the image plane of a telescope, which is crucial for directly imaging Earth-like exoplanets. The state of the art in high-contrast signal detection methods was developed specifically for coronagraph images and focuses on the removal of quasi-static speckles. These methods are less useful for starshade images where such speckles are not present. This work is dedicated to investigating signal detection tailored to starshade images. I begin with the first step towards the investigation: realistic starshade image simulation. The simulation considers factors such as starshade defects and detector noise. Then, signal detection methods are presented. Due to the absolute faintness of Earth-like planets, an Electron Multiplying Charged Coupled Device operating in photon counting (PC) mode is used. Typically, PC images are added together as a co-added image before processing. Therefore, I first introduce a detection method based on a generalized likelihood ratio test (GLRT) for co-added images under the Gaussian assumption. I also extend the method to mitigate the effect of exozodiacal dust. Then, I improve the method by working directly with individual PC images using a Bernoulli distribution. The Bernoulli distribution is derived from a stochastic model for the detector, which accurately represents its noise characteristics. I show that my techniques outperform a popular detection algorithm based on signal to noise ratio. Besides successfully flagging the dim planets, my methods provide the maximum likelihood estimate of exoplanet intensity and background intensity while doing detection. Moreover, my methods can help distinguish planet signals from artifacts caused by starshade defects. It can also guide stopping observations early, providing confidence for the existence (or absence) of planets. As a result, the observation time is efficiently used. Besides the observation time, the analysis of detection performance introduced in the thesis also gives quantitative guidance on the choice of imaging parameters, such as the threshold for PC mode. Last but not the least, though this work focuses on the example of detecting point sources in starshade images, the framework is widely applicable. All the methods are demonstrated on realistic simulated images.
URI: http://arks.princeton.edu/ark:/99999/fk45h90080
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: catalog.princeton.edu
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Mechanical and Aerospace Engineering

Files in This Item:
File SizeFormat 
hu_princeton_0181D_13634.pdf6.62 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.