Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01xp68kk12s
Title: Solitary zonal structures in subcritical drift waves: a minimum model
Contributors: Yao Zhou
Hongxuan Zhu
I. Y. Dodin
U. S. Department of Energy
Keywords: drift waves
zonal flows
subcritical turbulence
solitons
Issue Date: Mar-2020
Publisher: Princeton Plasma Physics Laboratory, Princeton University
Related Publication: Plasma Physics and Controlled Fusion
Abstract: {\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf610{\fonttbl\f0\fswiss\fcharset0 Helvetica;}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}{\*\expandedcolortbl;;\cssrgb\c0\c0\c0;}\margl1440\margr1440\vieww10800\viewh8400\viewkind0\pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0\f0\fs38 \cf2 Solitary zonal structures have recently been identified in gyrokinetic simulations of subcritical drift-wave (DW) turbulence with background shear flows. However, the nature of these structures has not been fully understood yet. Here, we show that similar structures can be obtained within a reduced model, which complements the modified Hasegawa\'97Mima equation with a generic primary instability and a background shear flow. We also find that these structures can be qualitatively reproduced in the modified Hasegawa\'97Wakatani equation, which subsumes the reduced model as a limit. In particular, we illustrate that in both cases, the solitary zonal structures approximately satisfy the same \'93equation of state\'94, which is a local relation connecting the DW envelope with the zonal-flow velocity. Due to this generality, our reduced model can be considered as a minimum model for solitary zonal structures in subcritical DWs. }
URI: http://arks.princeton.edu/ark:/88435/dsp01xp68kk12s
Appears in Collections:Theory and Computation

Files in This Item:
File Description SizeFormat 
README.txt1.14 kBTextView/Download
ARK_DATA.zip9.7 MBUnknownView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.