Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01wm117p169
Full metadata record
DC FieldValueLanguage
dc.contributorAche, Antonio-
dc.contributor.advisorChang, Sun-Yung Alice-
dc.contributor.authorChen, Eric-
dc.date.accessioned2014-07-22T19:01:42Z-
dc.date.available2014-07-22T19:01:42Z-
dc.date.created2014-05-05-
dc.date.issued2014-07-22-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01wm117p169-
dc.description.abstractLet µ and ν be probability measures on R n , and let c : R n ×R n → [0, ∞) be a cost function. In its basic form, the optimal transport problem is to find a map T : R n → R n pushing the measure µ forward to ν, minimizing the cost of transportation R Rn c(x, T(x)) dµ(x). We review the reformulation of this problem in the context of the Kantorovich duality and describe some results on optimal transport with the quadratic cost function c(x, y) = |x−y| 2/2, in particular Brenier’s polar factorization theorem and its consequences. Finally, we discuss some results on the regularity of optimal maps in the quadratic cost setting and give a new condition guaranteeing the discontinuity of optimal maps in R n .en_US
dc.format.extent93 pagesen_US
dc.language.isoen_USen_US
dc.titleOptimal Transport: Some Analytic and Geometric Aspectsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2014en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
Eric Chen thesis.pdf642.55 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.