Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01w6634593x
Full metadata record
DC FieldValueLanguage
dc.contributorDvir, Zeev-
dc.contributor.advisorTarjan, Robert-
dc.contributor.authorKufera, Gregory Andrew-
dc.date.accessioned2015-06-15T15:55:21Z-
dc.date.available2015-06-15T15:55:21Z-
dc.date.created2015-05-04-
dc.date.issued2015-06-15-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01w6634593x-
dc.description.abstractWe present a dynamic algorithm for the longest monotonically increasing subsequence of a finite set N ⊂ R 2 with unique x -values and with |N | = n, supporting insertions and deletions in O(n). Queries for the minimal partition into strictly decreasing subsequences are supported in O(1), queries for the maximal length L of a monotonically increasing subsequence are supported in O(1), and queries for a longest monotonically increasing subsequence are supported output-sensitively in O(L).en_US
dc.format.extent30 pagesen_US
dc.language.isoen_USen_US
dc.titleA Dynamic Algorithm for the Longest Increasing Subsequenceen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2015en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
PUTheses2015-Kufera_Gregory_Andrew.pdf467.64 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.