Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01w37639528
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOzsvath, Peter-
dc.contributor.advisorSzabo, Zoltan-
dc.contributor.authorHickok, Abigail-
dc.date.accessioned2018-08-17T19:08:41Z-
dc.date.available2018-08-17T19:08:41Z-
dc.date.created2018-05-07-
dc.date.issued2018-08-17-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01w37639528-
dc.description.abstractKhovanov homology is a knot invariant that categorifies the Jones polynomial. In Chapter 1, we will go through the construction of Khovanov homology, and survey some of its connections to knot Floer homology. In Chapter 2, we will discuss the conjecture that Khovanov homology is invariant under Conway mutation. We will consider two independent proofs of the fact that Khovanov homology over $\mathbb{F}_2$ is mutation invariant. Finally, in Chapter 3, we will look at the behavior of Khovanov homology under cabled mutation, which is a generalization of Conway mutation and a special case of genus-2 mutation.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleKhovanov Homology and Mutationen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid961004818-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
HICKOK-ABIGAIL-THESIS.pdf1.15 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.