Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01tt44pm89g
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAksay, Ilhan Aen_US
dc.contributor.advisorPrud'homme, Robert Ken_US
dc.contributor.authorPan, Shuyangen_US
dc.contributor.otherChemical and Biological Engineering Departmenten_US
dc.date.accessioned2012-08-01T19:35:45Z-
dc.date.available2012-08-01T19:35:45Z-
dc.date.issued2012en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01tt44pm89g-
dc.description.abstractThe incorporation of fillers to improve the Young's modulus, tensile strength, and elongation at failure of polymeric matrices is ubiquitous. While Young's modulus and tensile strength of the matrix increase with the filler concentration, a threshold filler concentration must be achieved for the elongation at failure to increase. Furthermore, a decrease in elongation at failure has also been observed beyond a critical filler concentration. While the increases in modulus and tensile strength have been attributed to the transfer of mechanical load to the stronger filler, the onset and reversal in elongation at failure are not understood. In this thesis, we use a functionalized graphene sheet (FGS) - silicone elastomer (SE) nanocomposite as a model system to demonstrate the mechanisms responsible for this observed filler concentration-dependant elongation at failure as well its subsequent reversal. We will also demonstrate the mechanisms that create the continual increase in tensile strength as filler concentration increases. As the lateral size of FGS strongly influences the tensile strength of the resulting composite, in the first part of this thesis, we show that the oxidation path and the mechanical energy input influence the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 m. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. Under both edge-to-center and cross-planar oxidations, the size of graphene oxide sheets is determined by the aspect ratio of graphite and the mechanical energy input in processing the sheets. In the second part of this thesis, we use atomic force microscopy-based single molecule force spectroscopy and infrared spectroscopy to show that the FGS-SE interface is dominated by the hydrogen bonds between the hydroxyl and epoxy groups on FGS and polydimethylsiloxane (PDMS, uncrosslinked form of SE) monomers. These hydrogen bonds allow the mechanical load to be transferred from the weaker SE to the stronger FGS, leading to an improvement in the tensile strength of SE. The strength of a single PDMS-FGS hydrogen bond is measured to be 30-120 pN and it is on the same order of magnitude as the strengths of other types of hydrogen bonds previously reported. In the final part of the thesis, utilizing experimental analysis and a two dimensional viscoelastic lattice model constructed by our collaborators, we show that while load transfer to FGS is the main cause of the enhancements in modulus and strength, the enhancement in elongation at failure is due to FGS-induced distributed tearing. First critical concentration, which defines the mechanical percolation, corresponds to the isolation of tensile zones generated by the fillers, as well as the initiation of tear arresting and deflection, thus enhancing distributed tearing and deformation. At the second critical concentration, cumulative dilation caused by distributed tearing reaches a maximum, leading to the reversal in elongation in failure.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectgrapheneen_US
dc.subjectnanocompositeen_US
dc.subject.classificationMaterials Scienceen_US
dc.titleGraphene-Silicone Elastomer Nanocompositeen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Chemical and Biological Engineering

Files in This Item:
File Description SizeFormat 
Pan_princeton_0181D_10191.pdf9.47 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.