Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01t435gg858
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChen, Yuxin-
dc.contributor.authorLi, Gene-
dc.date.accessioned2019-08-19T11:57:48Z-
dc.date.available2019-08-19T11:57:48Z-
dc.date.created2019-04-20-
dc.date.issued2019-08-19-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01t435gg858-
dc.description.abstractWe study the problem of system identification for discrete-time linear dynamical systems when the unknown parameter matrix exhibits a row-wise sparsity pattern. Such a structural constraint should reduce sample complexity of the estimation procedure. We give error bounds for the constrained LASSO algorithm in the independent inputs setting. We also work towards extending recent results on single trajectory estimation via constrained LASSO under the row-wise sparsity assumption. We discuss future directions to improve upon existing proof techniques for the estimation of structured parameter matrices in the single trajectory setting.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleLearning Linear Dynamical Systems with Sparsity Structureen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2019en_US
pu.departmentElectrical Engineeringen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid961189638-
pu.certificateCenter for Statistics and Machine Learningen_US
Appears in Collections:Electrical Engineering, 1932-2020

Files in This Item:
File Description SizeFormat 
LI-GENE-THESIS.pdf526.52 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.