Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01qb98mj216
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorArora, Sanjeev-
dc.contributor.advisorAbbe, Emmanuel-
dc.contributor.authorGoldstein, Maxwell-
dc.date.accessioned2018-08-17T19:20:14Z-
dc.date.available2018-08-17T19:20:14Z-
dc.date.created2018-05-07-
dc.date.issued2018-08-17-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01qb98mj216-
dc.description.abstractWe bound the error rate of a robotic grasping controller in novel environments by connecting recent work involving PAC-Bayes regularization to algorithmic decision making. Training a controller on the KUKA robot in the Bullet physics simulator, we compute a PAC-Bayes on the learned controller and show generalization bounds on the performance of the controller in new environments.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titlePAC-Bayes Regularization for Learning Controllers that Generalize Across Environmentsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960961401-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
GOLDSTEIN-MAXWELL-THESIS.pdf338.85 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.