Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01pz50gz967
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRussakovsky, Olga-
dc.contributor.advisorNarasimhan, Karthik-
dc.contributor.authorFeng, Berthy-
dc.date.accessioned2019-09-04T17:42:34Z-
dc.date.available2019-09-04T17:42:34Z-
dc.date.created2019-05-03-
dc.date.issued2019-09-04-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01pz50gz967-
dc.description.abstractImage captioning is an artificial intelligence (AI) task at the intersection of vision and language. Current approaches to the task are recognition-based, leading to models that struggle to reason about image content and context. We explore the current state of image captioning and offer solutions for advancing the task from recognition to reasoning, specifically through the use of unpaired training data and evaluation based on a novel discriminativeness metric.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleMoving from Recognition to Reasoning in Image Captioningen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2019en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960932079-
pu.certificateCenter for Statistics and Machine Learningen_US
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File Description SizeFormat 
FENG-BERTHY-THESIS.pdf2.36 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.