Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01nv935527t
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHazan, Elad-
dc.contributor.authorCrawford, Christopher-
dc.date.accessioned2016-06-22T15:12:23Z-
dc.date.available2016-06-22T15:12:23Z-
dc.date.created2016-04-29-
dc.date.issued2016-06-22-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01nv935527t-
dc.description.abstractMusical Key-detection is a sub-problem of the growing field of Music Information Retrieval. Key-detection and other technologies offered by MIR have increasing business and consumer applications given the rise of automated streaming music services that attempt to recommend music and generate playlists. This research offers several suggestions for the direction of improving key-detection and highlights specific extractable audio-features that improve detection.en_US
dc.format.extent60 pages*
dc.language.isoen_USen_US
dc.titleMachine Learning Approach to Musical Key Detectionen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2016en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File SizeFormat 
Crawford_Christopher_thesis.pdf1.31 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.