Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01k643b3556
Title: Computational Phase Imaging in Nonlinear and Quantum Systems
Authors: Lu, Chien-Hung
Advisors: Fleischer, Jason W.
Contributors: Electrical Engineering Department
Keywords: computational imaging
light-field imaging
nonlinear imaging
phase imaging
phase optics
quantum imaging
Subjects: Optics
Computer science
Physics
Issue Date: 2015
Publisher: Princeton, NJ : Princeton University
Abstract: The integration of optical hardware and computational software interweaves strengths and alleviates limitations of both sides in the design of imaging systems. For example, computational algorithms treat imaging as a signal sensing, suggesting smart sampling and incorporating a priori information of the desired signal. On the other side, add-on optics resolves ill-posed digital processing and intractable computation by utilizing physical components and modeling. This interdisciplinary approach, called computational imaging, integrates optics, image processing and computer science to optimize the design of imaging systems. This dissertation starts with a classic example of computational imaging in phase measurement, which gives important information about object surface, internal structure, optical depth, and wave dynamics. However, the phase of light oscillates so fast that CCD / CMOS camera can only capture the average field (i.e. the intensity), resulting in the loss of the phase of optical signal. Nevertheless, phase accumulates during optical propagation, meaning that the complex components can still be retrieved through intensity-only measurements by cooperating well-designed algorithms. Popular computational algorithms include deterministic approaches such as the transport-of-intensity equation (TIE) and statistical methods such as the Gerchberg-Saxton algorithm (GS). The former solves a wave equation by a set of in-focus and defocused images. The latter iterates intensity observations at the near- and far-field to find the optimal phase. However, both of them employ assumptions of linear propagation of light in classical systems. In this dissertation, we relax these assumptions and generalize computational methods with higher-order optics, including light-field imaging, nonlinear photonics and quantum entanglement, leading to prominent computational phase imaging.
URI: http://arks.princeton.edu/ark:/88435/dsp01k643b3556
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: http://catalog.princeton.edu/
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Electrical Engineering

Files in This Item:
File Description SizeFormat 
Lu_princeton_0181D_11552.pdf19.36 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.