Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01jq085k04v
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKlainerman, Sergiuen_US
dc.contributor.authorIsett, Philip Jamesen_US
dc.contributor.otherMathematics Departmenten_US
dc.date.accessioned2013-05-21T13:33:21Z-
dc.date.available2013-05-21T13:33:21Z-
dc.date.issued2013en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01jq085k04v-
dc.description.abstractBuilding on the recent work of C. De Lellis and L. Szekelyhidi, we construct global weak solutions to the three-dimensional incompressible Euler equations which are zero outside of a finite time interval and have velocity in the Holder class C<super>1/5 - &epsilon;</super>. By slightly modifying the proof, we show that every smooth solution to incompressible Euler on (-2, 2)&times;T<super>3</super> coincides on (-1, 1)&times;T<super>3</super> with some Holder continuous solution that is constant outside (-3/2, 3/2)&times;T<super>3</super>. We also propose a conjecture related to our main result that would imply Onsager's conjecture that there exist energy dissipating solutions to Euler whose velocity fields have Holder exponent 1/3 - &epsilon;.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectconvex integrationen_US
dc.subjecteuler equationsen_US
dc.subjectfluid mechanicsen_US
dc.subjectonsager's conjectureen_US
dc.subjectpartial differential equationsen_US
dc.subjectturbulenceen_US
dc.subject.classificationMathematicsen_US
dc.titleHölder Continuous Euler Flows with Compact Support in Timeen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Isett_princeton_0181D_10597.pdf982.34 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.