Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01j9602064b
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRussel, William Ben_US
dc.contributor.authorNdong, Rose Seynabouen_US
dc.contributor.otherChemical and Biological Engineering Departmenten_US
dc.date.accessioned2012-03-29T18:04:55Z-
dc.date.available2012-03-29T18:04:55Z-
dc.date.issued2012en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01j9602064b-
dc.description.abstractTo enhance properties of the ultimate materials, melt processed polymers are commonly filled with colloidal particles, such as inorganic oxides. Dispersing such particles in a melt is generally difficult due to the strong van der Waals attractions. These attractive forces can be modulated through surface modifications such as polymer adsorption and grafting. Indeed, the relative viscosity of 430 nm Al2O3particles stabilized by end-tethered poly(dimethylsiloxane) (PDMS) in PDMS melts decreases with increasing graft density and molecular weight as expected, but also with increasing molecular weight of the melt, contrary to well established theories. The relative steady shear viscosity exhibits neither a low shear limit nor a yield stress, but follows a power law characterized by relative high shear viscosity (\(\eta_{\infty}/\mu\)) and a structural relaxation time (\(\tau\)). The measured structural time can be correlated reasonably well with a characteristic relaxation time, \(\tau_{0}\), estimated by equating the viscous resistance with the maximum attractive force. We further explored the significance of this power law with TiO2 nanoparticles in PDMS melts with a reduction in size and an increase in Hamaker constant. Bare, octadecyl-coated, and 9k-PDMS grafted TiO2 particles dispersed in neat and binary PDMS melts revealed behavior similar to that of the large alumina particles, as the increased strength of van der Waals forces offset the reduction in size. To complete the study ZrO2 nanoparticles were dispersed in solution of associative polymers and characterized by small amplitude oscillatory shear. The data exhibits two relaxation modes: Maxwellian behavior at high frequency imparted by the associating polymers and a power law spectrum at low frequency from the particles. The timescales and volume fraction dependence reflect the attractions between particles with adsorbed polymer layers dispersed in a percolated network of associative polymers. Together these studies demonstrate the range and origin of the rheology possible with particles dispersed in polymeric mediaen_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectinteractionsen_US
dc.subjectparticlesen_US
dc.subjectrheologyen_US
dc.subjectsurface modificationsen_US
dc.subjectvan der Waalsen_US
dc.subjectviscoelasticiyen_US
dc.subject.classificationChemical engineeringen_US
dc.subject.classificationMaterials Scienceen_US
dc.titleColloidal Dispersions in Polymeric Media: Interparticle Forces, Microstructure and Rheologyen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Chemical and Biological Engineering

Files in This Item:
File Description SizeFormat 
Ndong_princeton_0181D_10134.pdf3.16 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.