Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01ht24wn171
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFellbaum, Christiane-
dc.contributor.authorToy, Nico-
dc.date.accessioned2018-08-14T15:39:55Z-
dc.date.available2018-08-14T15:39:55Z-
dc.date.created2018-05-08-
dc.date.issued2018-08-14-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01ht24wn171-
dc.description.abstractThis paper describes the development of a framework for generating classical music in a given style by training on compositions using an Recurrent Neural Network. We detail a novel technique of encoding sequences of musical notes into sequences of vectors suitable for training, in a way that preserves certain high-level music properties such as key and time signature. We then present the architecture of the neural network used and how we train on notes encoded in this way.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleContext-Aware Algorithmic Composition in the Style of Classical Composers using Machine Learningen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960962466-
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File Description SizeFormat 
TOY-NICO-THESIS.pdf2.06 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.