Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01g445cd27c
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBenziger, Jay B.en_US
dc.contributor.advisorKevrekidis, Yannis G.en_US
dc.contributor.authorCheah, May Jeanen_US
dc.contributor.otherChemical and Biological Engineering Departmenten_US
dc.date.accessioned2013-09-16T17:27:19Z-
dc.date.available2013-09-16T17:27:19Z-
dc.date.issued2013en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01g445cd27c-
dc.description.abstractPolymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current can be significantly reduced due to diffusional limitation of the transport of gaseous reactants through inerts such as water vapor and nitrogen gas. A non-uniform current distribution across the membrane electrode assembly can cause pinhole formation and ultimately, fuel cell failure.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectelectro-osmotic dragen_US
dc.subjectfuel cellsen_US
dc.subjectNafionen_US
dc.subjectslugsen_US
dc.subjectwater removalen_US
dc.subjectwater transporten_US
dc.subject.classificationChemical engineeringen_US
dc.subject.classificationEnergyen_US
dc.subject.classificationEngineeringen_US
dc.titleUnderstanding the Transport Processes in Polymer Electrolyte Membrane Fuel Cellsen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Chemical and Biological Engineering

Files in This Item:
File Description SizeFormat 
Cheah_princeton_0181D_10620.pdf8.87 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.