Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01cn69m710m
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRussakovsky, Olga-
dc.contributor.authorTeferi, Emmanuel-
dc.date.accessioned2020-08-12T14:41:54Z-
dc.date.available2020-08-12T14:41:54Z-
dc.date.created2020-05-
dc.date.issued2020-08-12-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01cn69m710m-
dc.description.abstractThe goal of this study is to explore classification models that could be potentially used in Computer Aided Diagnosis (CADx). The performances of models with different feature extraction methods, feature representations, and classifier combinations are tested and analyzed. None of the models explored in this study are viable options for CADx models. The results may reveal useful information regarding future improvement of CADx models.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleORIGINALen_US
dc.titleORIGINALen_US
dc.titleAn Exploratory Analysis of ML Models in CADx Designen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2020en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid961269314-
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File SizeFormat 
TEFERI-EMMANUEL-THESIS.pdf3.64 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.