Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01c534fn974
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSkinner, Christopheren_US
dc.contributor.authorWAN, XINen_US
dc.contributor.otherMathematics Departmenten_US
dc.date.accessioned2012-08-01T19:33:19Z-
dc.date.available2012-08-01T19:33:19Z-
dc.date.issued2012en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01c534fn974-
dc.description.abstractIn this thesis we generalize earlier work of Skinner and Urban to construct ($p$-adic families of) nearly ordinary Klingen Eisensten series for the unitary groups $U(r,s)\hookrightarrow U(r+1,s+1)$ and do some preliminary computations of their Fourier Jacobi coefficients. As an application, using the case of the embedding $U(1,1)\hookrightarrow U(2,2)$ over totally real fields in which the odd prime $p$ splits completely, we prove that for a Hilbert modular form $f$ of parallel weight $2$, trivial character, and good ordinary reduction at all places dividing $p$, if the central critical $L$-value of $f$ is $0$ then the associated Bloch Kato Selmer group has infinite order. We also state a consequence for the Tate module of elliptic curves over totally real fields that are known to be modular.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectBloch-Kato conjecturesen_US
dc.subjectEisenstein seriesen_US
dc.subjectIwasawa theoryen_US
dc.subjectp-adic L-functionsen_US
dc.subjectSelmer groupsen_US
dc.subject.classificationMathematicsen_US
dc.titlethe Iwasawa Theory for Unitary groupsen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
WAN_princeton_0181D_10237.pdf686.21 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.