Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp019s1618567
Title: | A New Approach to Lossy Compression and Applications to Security |
Authors: | Song, Chen Eva |
Advisors: | Cuff, Paul Poor, Vincent |
Contributors: | Electrical Engineering Department |
Keywords: | Lossy compression Security |
Subjects: | Electrical engineering |
Issue Date: | 2015 |
Publisher: | Princeton, NJ : Princeton University |
Abstract: | In this thesis, rate-distortion theory is studied in the context of lossy compression communication systems with and without security concerns. A new source coding proof technique using the ``likelihood encoder" is proposed that achieves the best known compression rate in various lossy compression settings. It is demonstrated that the use of the likelihood encoder together with Wyner's soft-covering lemma yields simple achievability proofs for classical source coding problems. We use the likelihood encoder technique to show the achievability parts of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem). Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also compared, both in concept and performance, to a recent alternative random-binning based technique. Also, the likelihood-encoder source coding technique is further used to obtain new results in rate-distortion based secrecy systems. Several secure source coding settings, such as using shared secret key and correlated side information, are investigated. It is shown that the rate-distortion based formulation for secrecy fully generalizes the traditional equivocation-based secrecy formulation. The extension to joint source-channel security is also considered using similar encoding techniques. The rate-distortion based secure source-channel analysis is applied to optical communication for reliable and secure delivery of an information source through a multimode fiber channel subject to eavesdropping. |
URI: | http://arks.princeton.edu/ark:/88435/dsp019s1618567 |
Alternate format: | The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: http://catalog.princeton.edu/ |
Type of Material: | Academic dissertations (Ph.D.) |
Language: | en |
Appears in Collections: | Electrical Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Song_princeton_0181D_11565.pdf | 2.81 MB | Adobe PDF | View/Download |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.