Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp019880vt721
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSzabo, Zoltan-
dc.contributor.advisorOzsvath, Peter-
dc.contributor.authorXu, Xiaoyu-
dc.date.accessioned2018-08-17T18:17:11Z-
dc.date.available2018-08-17T18:17:11Z-
dc.date.created2018-05-15-
dc.date.issued2018-08-17-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp019880vt721-
dc.description.abstractIn this paper we construct an infinite family of knots with vanishing Upsilon invariant $\Upsilon$, although their secondary Upsilon invariants $\Upsilon^2$ show that they are linearly independent in the smooth knot concordance group. We also prove a conjecture in a paper by Allen.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleOn the Secondary Upsilon Invarianten_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960962178-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
XU-XIAOYU-THESIS.pdf2.71 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.