Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp018k71nk94t
Title: Integer points on complements of dual curves and on genus one modular curves
Authors: Chen, Ryan
Advisors: Zhang, Shou-Wu
Department: Mathematics
Class Year: 2019
Abstract: Higher dimension analogs of Siegel's theorem on the finiteness of integer points are known in limited cases and often come with restrictions on the divisor at infinity, e.g. that the divisor should have many irreducible components. In the first half of this thesis, we give a new class of prime divisors in the plane, namely duals of certain smooth plane curves, whose complements have finitely many integer points. This is accomplished using a moduli of curves interpretation. In the second half of this thesis, we give a proof of the finiteness of integer points on genus one modular curves. This result is not new, but the proof we give is based on the $p$-adic period map and ideas from a recent new proof of the Mordell conjecture by Lawrence and Venkatesh.
URI: http://arks.princeton.edu/ark:/88435/dsp018k71nk94t
Type of Material: Princeton University Senior Theses
Language: en
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
CHEN-RYAN-THESIS.pdf553.27 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.