Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp017w62f842g
Title: | Fabrication of Protein Scaffold-Nanoparticle Conjugates for Targeted Cancer Therapeutics |
Authors: | Edelstein, Jasmine |
Advisors: | Prud'homme, Robert K. |
Department: | Chemical and Biological Engineering |
Class Year: | 2014 |
Abstract: | Targeted nanotherapeutics for cancer aim to preferentially deliver medicine to the tumor, increasing drug localization and reducing negative side effects. In this study, PSb- PEG nanoparticles were specifically targeted to epidermal growth factor receptors (EGFR), often overexpressed in cancer, using protein scaffold ligands known as Centyrins. Both maleimide-thiol and azide-alkyne conjugation chemistries were evaluated. Gel image analysis indicated similar conjugation efficiencies, but azide-alkyne chemistry is preferable for scale-up because it involves one less synthesis step, resists degradation over time, and requires less excess Centyrin to achieve high conjugation efficiency. Based on surface plasmon resonance, Centyrin-conjugated nanoparticles had 17-fold greater avidity for EGFR than free Centyrin at the highest tested ligand density. Fluorescence-activated cell sorting indicated that intracellular uptake plateaus at 1.9 mol% ligand density, reinforcing the literature observation that excessive binding can inhibit endocytosis. In an effort to transition to a biodegradable construct, PS-b-PEG was replaced with PLA-b-PEG. Experiments were conducted to determine the Flash NanoPrecipitation formulation that produces nanoparticles with properties desirable in a cancer nanotherapeutic, namely a diameter between 70 and 90 nm with a size distribution less than 0.2. Three parameters were varied: block copolymer-to-core ratio, solute concentration, and PLA block length. Based on experimental results, MODDE software generated a model to predict hydrodynamic diameter (R\(^{2}\) = 0.58) and size distribution (R\(^{2}\) = 0.81). The predicted optimal formulation was tested and yielded a nanoparticle with a diameter of 97 ± 16 nm and size distribution of 0.2 ± 0.03. |
Extent: | 60 pages |
URI: | http://arks.princeton.edu/ark:/88435/dsp017w62f842g |
Type of Material: | Princeton University Senior Theses |
Language: | en_US |
Appears in Collections: | Chemical and Biological Engineering, 1931-2019 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Edelstein_Jasmine_CBE 14_Thesis Final.pdf | 5.03 MB | Adobe PDF | Request a copy |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.