Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp017d278t05z
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSinai, Yakov Gen_US
dc.contributor.authorVinogradov, Ilyaen_US
dc.contributor.otherMathematics Departmenten_US
dc.date.accessioned2012-08-01T19:33:20Z-
dc.date.available2012-08-01T19:33:20Z-
dc.date.issued2012en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp017d278t05z-
dc.description.abstractLet Gamma < PSL(2, C) be a geometrically finite non-elementary discrete subgroup, and let its critical exponent delta be greater than 1. We use representation theory of PSL(2, C) to prove an effective bisector counting theorem for Gamma, which allows counting the number of points of Gamma in general expanding regions in PSL(2, C) and provides an explicit error term. We apply this theorem to give power savings in the Apollonian circle packing problem and related counting problems.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectApollonian circle packingsen_US
dc.subjectbisector countingen_US
dc.subjecthyperbolic lattice point countingen_US
dc.subject.classificationMathematicsen_US
dc.titleEffective bisector estimate with application to Apollonian circle packingsen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Vinogradov_princeton_0181D_10260.pdf1.14 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.