Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp016h440w41x
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSkinner, Christopher-
dc.contributor.authorLin, Alice-
dc.date.accessioned2020-07-24T13:05:39Z-
dc.date.available2020-07-24T13:05:39Z-
dc.date.created2020-05-04-
dc.date.issued2020-07-24-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp016h440w41x-
dc.description.abstractA result of Bruinier and Ono shows that under certain conditions on the zeroes and poles of a meromorphic elliptic modular form \(f\) with respect to a prime \(p\), the quotient \(\theta f / f\) is a \(p\)-adic modular form of weight 2 in the sense of Serre, where \(\theta\) is the Ramanujan differential operator. We give another proof of the same result for \(p\)-adic modular forms in the sense of Katz, using the geometric interpretation of modular forms as sections of a line bundle over the modular curve. We also prove a new, analogous result for Hilbert modular forms. For a given prime \(p\), we characterize which Hirzebruch-Zagier divisors lie in the supersingular locus of the Hilbert modular surface modulo \(p\), yielding an application of the analogous result for Borcherds products.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleBorcherds products for O(2,2) and the \(\theta\) operator on p-adic Hilbert modular formsen_US
dc.titleBorcherds products for O(2,2) and the \(\theta\) operator on p-adic Hilbert modular formsen_US
dc.titleORIGINAL-
dc.typePrinceton University Senior Theses-
pu.date.classyear2020en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid961236154-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
LIN-ALICE-THESIS.pdf525.83 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.