Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp016h440w27m
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhou, Yao | - |
dc.contributor.author | Zhu, Hongxuan | - |
dc.contributor.author | Dodin, I. Y. | - |
dc.date.accessioned | 2019-06-10T19:03:42Z | - |
dc.date.available | 2019-06-10T19:03:42Z | - |
dc.date.issued | 2019-06 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/dsp016h440w27m | - |
dc.description.abstract | {\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;\red0\green0\blue0;} {\*\expandedcolortbl;;\cssrgb\c0\c0\c0;} \margl1440\margr1440\vieww10800\viewh8400\viewkind0 \pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0 \f0\fs38 \cf2 The dynamics of the radial envelope of a weak coherent drift wave is approximately governed by a nonlinear Schr\'f6dinger equation, which emerges as a limit of the modified Hasegawa\'97Mima equation. The nonlinear Schr\'f6dinger equation has well-known soliton solutions, and its modulational instability can naturally generate solitary structures. In this paper, we demonstrate that this simple model can adequately describe the formation of solitary zonal structures in the modified Hasegawa\'97Mima equation, but only when the amplitude of the coherent drift wave is relatively small. At larger amplitudes, the modulational instability produces stationary zonal structures instead. Furthermore, we find that incoherent drift waves with beam-like spectra can also be modulationally unstable to the formation of solitary or stationary zonal structures, depending on the beam intensity. Notably, we show that these drift waves can be modeled as quantumlike particles (\'93driftons\'94) within a recently developed phase-space (Wigner\'97Moyal) formulation, which intuitively depicts the solitary zonal structures as quasi-monochromatic drifton condensates. Quantumlike effects, such as diffraction, are essential to these condensates; hence, the latter cannot be described by wave-kinetic models that are based on the ray approximation.\ } | en_US |
dc.description.tableofcontents | readme and digital data files | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Princeton Plasma Physics Laboratory, Princeton University | en_US |
dc.relation | Plasma Physics and Controlled Fusion | en_US |
dc.subject | Drift waves | en_US |
dc.subject | Zonal flows | en_US |
dc.subject | Solitons | en_US |
dc.title | Formation of solitary zonal structures via the modulational instability of drift waves | en_US |
dc.type | Dataset | en_US |
dc.contributor.funder | U. S. Department of Energy | en_US |
Appears in Collections: | Theory and Computation |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
README.txt | 88 B | Text | View/Download | |
ARK_DATA.zip | 13.42 MB | Unknown | View/Download |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.