Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp016h440w27m
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhou, Yao-
dc.contributor.authorZhu, Hongxuan-
dc.contributor.authorDodin, I. Y.-
dc.date.accessioned2019-06-10T19:03:42Z-
dc.date.available2019-06-10T19:03:42Z-
dc.date.issued2019-06-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp016h440w27m-
dc.description.abstract{\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;\red0\green0\blue0;} {\*\expandedcolortbl;;\cssrgb\c0\c0\c0;} \margl1440\margr1440\vieww10800\viewh8400\viewkind0 \pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0 \f0\fs38 \cf2 The dynamics of the radial envelope of a weak coherent drift wave is approximately governed by a nonlinear Schr\'f6dinger equation, which emerges as a limit of the modified Hasegawa\'97Mima equation. The nonlinear Schr\'f6dinger equation has well-known soliton solutions, and its modulational instability can naturally generate solitary structures. In this paper, we demonstrate that this simple model can adequately describe the formation of solitary zonal structures in the modified Hasegawa\'97Mima equation, but only when the amplitude of the coherent drift wave is relatively small. At larger amplitudes, the modulational instability produces stationary zonal structures instead. Furthermore, we find that incoherent drift waves with beam-like spectra can also be modulationally unstable to the formation of solitary or stationary zonal structures, depending on the beam intensity. Notably, we show that these drift waves can be modeled as quantumlike particles (\'93driftons\'94) within a recently developed phase-space (Wigner\'97Moyal) formulation, which intuitively depicts the solitary zonal structures as quasi-monochromatic drifton condensates. Quantumlike effects, such as diffraction, are essential to these condensates; hence, the latter cannot be described by wave-kinetic models that are based on the ray approximation.\ }en_US
dc.description.tableofcontentsreadme and digital data filesen_US
dc.language.isoen_USen_US
dc.publisherPrinceton Plasma Physics Laboratory, Princeton Universityen_US
dc.relationPlasma Physics and Controlled Fusionen_US
dc.subjectDrift wavesen_US
dc.subjectZonal flowsen_US
dc.subjectSolitonsen_US
dc.titleFormation of solitary zonal structures via the modulational instability of drift wavesen_US
dc.typeDataseten_US
dc.contributor.funderU. S. Department of Energyen_US
Appears in Collections:Theory and Computation

Files in This Item:
File Description SizeFormat 
README.txt88 BTextView/Download
ARK_DATA.zip13.42 MBUnknownView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.