Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp015q47rn85w
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPritchard, David-
dc.contributor.authorRyan, Daniel-
dc.date.accessioned2013-07-26T16:22:21Z-
dc.date.available2013-07-26T16:22:21Z-
dc.date.created2013-05-06-
dc.date.issued2013-07-26-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp015q47rn85w-
dc.description.abstractThis paper discusses the motivation, design, implementation, and evaluation of a new electronic beat sequencing system called HMM Beats. HMM Beats is inspired by recent work in machine learning on user drum beat prediction. HMM Beats is an interactive system through which a user composes beat loops through an iterative process with a learned computer agent. Based upon the beats of the drums that the user has already composed, the agent can be queried as to what the beats of the another drum should be. The agent's knowledge is stored in Hidden Markov Models (HMMs) built from a statistical analysis of preexisting midi drum loops. Through the use of this system, a user can freely compose while at the same time leverage the compositional aid of the computer. The user and computer agent thus iterate back and forth in realtime, building interesting electronic beat structures. The physical interface of HMM Beats is the QuNeo 3D, a multi-touch customizable midi controller. The main control unit of HMM Beats is a Max/MSP patch. The machine learning and beat queries take place in a python script utilizing the General Hidden Markov Model (GHMM) library.en_US
dc.format.extent50 pagesen_US
dc.language.isoen_USen_US
dc.titleHMM Beatsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2013en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
dc.rights.accessRightsWalk-in Access. This thesis can only be viewed on computer terminals at the <a href=http://mudd.princeton.edu>Mudd Manuscript Library</a>.-
pu.mudd.walkinyes-
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File SizeFormat 
Daniel Ryan.pdf3.91 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.