Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp015q47rn73z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElenius, Maria-
dc.contributor.authorTchelepi, Hamdi-
dc.contributor.authorJohannsen, Klaus-
dc.date.accessioned2010-05-13T14:35:27Z-
dc.date.available2010-05-13T14:35:27Z-
dc.date.created2010-02-01-
dc.date.issued2010-05-13T14:35:27Z-
dc.date.submitted2010-05-13-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp015q47rn73z-
dc.description.abstractWe performed numerical simulations of the migration of a supercritical CO2 current in a sloping aquifer in the presence of residual and solubility trapping. Compared to simulations with residual trapping only, when dissolution is accounted for the trapping efficiency is nearly doubled and the speed and maximum up-dip extent of the plume are affected. The saturations in the plume correspond well to transition zones consistent with capillary equilibrium. The pressure gradients slightly ahead of the leading tip of the current remain at the initial values, and that opens up the possibility to use a simple moving boundary to model extremely long aquifers.en
dc.language.isoen_USen
dc.relation.ispartofseriesXVIII International Conference on Water Resources, CMWR 2010, J. Carrera (Ed), Barcelona, 2010en
dc.subjectcapillary forcesen
dc.subjectdissolutionen
dc.titleCO2 trapping in sloping aqiufers: High resolution numerical simulationsen
dc.typePreprinten
pu.projectgrantnumber155-2961en
Appears in Collections:Princeton-Bergen Series on Carbon Storage

Files in This Item:
File Description SizeFormat 
EleniusEtAl CMWR 2010.pdf205.84 kBAdobe PDFView/Download


This item is licensed under a Creative Commons License Creative Commons