Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp015h73pz79r
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChang, Alice-
dc.contributor.advisorYang, Paul-
dc.contributor.authorKuan, Jeffrey-
dc.date.accessioned2018-08-17T18:18:04Z-
dc.date.available2018-08-17T18:18:04Z-
dc.date.created2018-05-07-
dc.date.issued2018-08-17-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp015h73pz79r-
dc.description.abstractIn this thesis, we summarize a result by Kuwert and Li [1] about the minimizers of the Willmore energy among the class of conformal immersions f : S^2 → R^3 with fixed isoperimetric ratio \sigma. Using results by Schygulla [2] as a starting point, we follow Kuwert and Li’s argument in [1] about the behavior of these minimizers as the isoperimetric ratio \sigma tends to zero. To do this, we first present some basic facts about conformal immersions, and then introduce some results by Chen and Li [3] about bubbles, concentration points, and the bubble tree. Then, we present the argument by Kuwert and Li [1] about the limiting behavior of the Willmore minimizers as the isoperimetric ratio \sigma goes to zero.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleWillmore energy of conformal immersionsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960961579-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
KUAN-JEFFREY-THESIS.pdf461.91 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.