Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp015138jh49f
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFunkhouser, Thomas A.-
dc.contributor.authorBradley, Elizabeth-
dc.date.accessioned2017-07-20T14:34:53Z-
dc.date.available2017-07-20T14:34:53Z-
dc.date.created2017-05-05-
dc.date.issued2017-5-5-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp015138jh49f-
dc.description.abstractThis thesis establishes a methodology for building natural language query-based retrieval systems for large datasets of 3D scenes. We present our results through the introduction of a proof-of-concept search engine, SUNCG Search, indexed on the SUNCG dataset of approximately forty-five thousand richly-annotated scenes. We find that for the retrieval tasks of dataset exploration and subset identification, our novel approach of identifying binary spatial relationships between objects greatly decreases the time users spend on these tasks. Additionally, we introduce unique solutions to information retrieval's prototypical difficulties -- result visualization and query interface design -- with specific application to the 3D scene use case.en_US
dc.language.isoen_USen_US
dc.titleToward Content-Aware Scene Retrieval Using Natural Languageen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2017en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960879942-
pu.contributor.advisorid910083875-
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File SizeFormat 
written_final_report.pdf624.92 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.