Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp014j03d2400
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBottman, Nathaniel-
dc.contributor.advisorHorton, Henry-
dc.contributor.authorZhang, Christopher-
dc.date.accessioned2018-08-17T19:07:42Z-
dc.date.available2018-08-17T19:07:42Z-
dc.date.created2018-05-
dc.date.issued2018-08-17-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp014j03d2400-
dc.description.abstractWe give an introductory survey of Floer homology and Fukaya categories assuming only basic symplectic geometry. The survey is meant to be targeted at a lower level than Auroux’s survey [3]. We say very little about the analytical details involved in Fukaya categories and move quickly to discuss the algebraic side. We show an application of these algebraic techniques by proving a theorem by Keating about symplectic Dehn twists [14]. This theorem is a generalization of the theorem that if two curves α, β have minimal geometric intersection number ≥ 2, then the Dehn twists τα, τβ generate a free subgroup of the mapping class group.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleFukaya Categories and Intersection Numbersen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2018en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960948291-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
ZHANG-CHRISTOPHER-THESIS.pdf792 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.