Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp0147429c903
Title: Thrust Scaling in Applied-Field Magnetoplasmadynamic Thrusters
Authors: Coogan, William
Advisors: Choueiri, Edgar Y
Contributors: Mechanical and Aerospace Engineering Department
Subjects: Aerospace engineering
Plasma physics
Issue Date: 2018
Publisher: Princeton, NJ : Princeton University
Abstract: A theoretical and experimental investigation of the scaling of thrust of applied-field magnetoplasmadynamic thrusters with geometric and operational parameters is undertaken. In the canonical applied-field thrust model, the thrust coefficient, which is the ratio of the measured thrust to the modeled thrust, is assumed to be constant. It is shown in this work that there exists a governing “confinement parameter,” which represents the ratio of the inward to outward radial forces acting on the plasma, and which depends on the total current, applied magnetic field, mass flow rate, acoustic velocity at the anode throat, the ratio of specific heats, and the thruster geometry. It is shown that this parameter defines two different modes of operation, and that the thrust coefficient is only constant on the boundary between these two modes, where the confinement parameter is equal to one. When the confinement parameter is greater than unity, the inward radial forces are larger than the outward radial forces, and the plasma is in a magnetic-confinement mode. In this mode, the plasma is pinched inward from the anode wall, reducing the volume on which the Lorentz force acts to generate thrust. It is demonstrated, using data from the literature, that increasing the pinching forces in this mode of operation reduces the thrust. When the confinement parameter is less than unity, the outward radial forces exceed the inward radial forces, and the plasma is in the anode-confinement mode. In this mode, it is demonstrated that, for a given thruster, the thrust coefficient depends solely on the confinement parameter. Increasing the confinement parameter decreases the plasma density near the anode wall and increases the density near the thrust axis, which increases pressure on the tip of the cathode, and the rate of rotation of the plasma column. Both the increase in pressure, and the increase in azimuthal kinetic energy, result in increased applied-field thrust.
URI: http://arks.princeton.edu/ark:/88435/dsp0147429c903
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: catalog.princeton.edu
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Mechanical and Aerospace Engineering

Files in This Item:
File Description SizeFormat 
Coogan_princeton_0181D_12704.pdf28.4 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.