Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp0137720g37s
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSarnak, Peter C-
dc.contributor.authorZhang, Ruixiang-
dc.contributor.otherMathematics Department-
dc.date.accessioned2017-09-22T14:40:49Z-
dc.date.available2017-09-22T14:40:49Z-
dc.date.issued2017-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp0137720g37s-
dc.description.abstractIn this thesis, we study the perturbed Brascamp-Lieb inequalities and its applications in translation-dilation systems. We prove the endpoint perturbed Brascamp-Lieb inequalities using polynomial partition techniques. We also look at the Parsell-Vinogradov system and verify the Brascamp-Lieb condition holds in its decoupling approach. As a corollary of this and the work of Guo, the main conjecture about the system is true in dimension $2$ and can be proved by the decoupling approach.-
dc.language.isoen-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=http://catalog.princeton.edu> catalog.princeton.edu </a>-
dc.subjectBrascamp-Lieb inequality-
dc.subjectDecoupling-
dc.subjectParsell-Vinogradov system-
dc.subjectPolynomial Method-
dc.subject.classificationMathematics-
dc.titlePerturbed Brascamp-Lieb inequalities and application to Parsell-Vinogradov systems-
dc.typeAcademic dissertations (Ph.D.)-
pu.projectgrantnumber690-2143-
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Zhang_princeton_0181D_12274.pdf318.9 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.